Let p = the product of all the odd integers between 500 and 598, and let q = the product of all the odd integers between 500 and 602. In terms of q , what is the value of 1/p+1/q ?
A) 1/600q
B) 1/359,999q
C) 1,200/q
D) 360,000/q
E) 359,999/q

Respuesta :

[tex]p=501\cdot503\cdot\cdots\cdot597[/tex]

[tex]q=\underbrace{501\cdot503\cdot\cdots\cdot597}_p\cdot599\cdot601[/tex]

So we have [tex]q=359,999p[/tex]. Then

[tex]\dfrac1p+\dfrac1q=\dfrac{359,999}{359,999p}+\dfrac1q=\dfrac{359,999+1}q=\dfrac{360,000}q[/tex]

and the answer is D.