ciara85 ciara85
  • 24-04-2017
  • Mathematics
contestada

L'Hospital's Rule
Lim
X approaches 0 cot2x•sin6x

Respuesta :

jdoe0001 jdoe0001
  • 24-04-2017
[tex]\bf \lim\limits_{x\to 0}\ cot(2x)sin(6x)\implies \lim\limits_{x\to 0}\ \cfrac{cos(2x)}{sin(2x)}sin(6x)\\\\ -----------------------------\\\\ \underline{LH}\qquad \cfrac{-2sin(2x)sin(6x)+cos(2x)6cos(6x)}{2cos(2x)} \\\\\\ \lim\limits_{x\to 0}\ \cfrac{-2sin(2x)sin(6x)+cos(2x)6cos(6x)}{2cos(2x)} \\\\\\ \lim\limits_{x\to 0}\ \cfrac{-0\cdot 0+1\cdot 6\cdot 1}{2\cdot 1}\implies \cfrac{6}{2}\implies 3[/tex]
Answer Link

Otras preguntas

six steps to write a paragraph about an endangers species
When multiplying two positive integers your answer will be positive?
How does pH and temperature affect cellular respiration?
What is the measure of 1,2, and 3
Which of the following protists are correctly paired with their mode of locomotion? euglenas, cilia amoebae, flagella volvox, pseudopodia paramecia, cilia​
foreign speakers learning English often use dangling modifiers? true or false?​
Pleaseeeee help me!!!!
Find the slope of the line that passes through (-1,-3) and (-2,2)
I will give brainliest answer if you can answer this please: In the following diagram, . Solve for each of the variables w, x, y, and z. For each solution, expl
pls answer lol!!!!!!!!!